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THE EVOLUTION OF OVIPARITY WITH EGG GUARDING AND VIVIPARITY IN

LIZARDS AND SNAKES: A PHYLOGENETIC ANALYSIS

M. pE FrAIPONT,!? J. CLOBERT,! AND R. BARBAULT!
Université Pierre et Marie Curie, Laboratoire d’Ecologie, CNRS URA-258,
Case 237, 7 Quai Saint Bernard, 75252 Paris 05, France

Abstract.—This paper investigates the evolution of viviparity and of egg guarding in lizards and snakes in which three
modes of reproduction can be described: oviparity without egg guarding, oviparity with egg guarding, and viviparity.
All possible transitions of reproductive modes were detected in each taxon using Maddison’s method. We then tested
two specific hypotheses. First, egg guarding can be regarded as an alternative to viviparity. A relatively frequent
association of egg guarding and viviparous species in the same taxon may be due to similar environmental conditions
or species characteristics leading to two different solutions. Second, egg guarding may facilitate the evolution of
viviparity. This hypothesis is supported by the high frequency of viviparous species in taxa containing egg guarding
species and by a tendency for prolonged uterine retention of eggs in brooding squamates. Our analyses demonstrate
that the first hypothesis is the best supported. Egg guarding and viviparity most often evolved independently. If a
major benefit of egg guarding is the repulsion of potential predators, size is one of the most obvious morphological
characters that should be correlated with the evolution of reproductive modes. The two reproductive traits were
correlated to a reduction in body size for viviparous species and an increase in body size for egg guarding species.

This could partly explain why the evolution of these reproductive modes seems almost antagonist.
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Most species of lizards and snakes bury their eggs and do
not guard them (Brattstrom 1974; Shine 1988). Egg guarding
by females occurs in about 0.8% of species (Greer 1971;
Shine 1988). Viviparity occurs in about 20% of all species
(Blackburn 1982), and about 71% of the viviparous species
belong to either the lizard families Iguanidae or Scincidae,
or the snake families Colubridae or Viperidae. Thus, vivi-
parity is distributed discontinuously among the squamate
taxa, and families vary greatly in their proportions of vivip-
arous species. This observation supports the hypothesis that
selective pressures, preadaptations, and constraints vary at
high taxonomic levels (Blackburn 1985). However, both ovi-
parity with egg guarding and viviparity sometimes cooccur
in the same lineages, suggesting a possible relationship be-
tween the evolution of viviparity and egg guarding (Shine
and Bull 1979; Gross and Shine 1981; Shine 1985, 1988).
Although several papers have considered the evolution of
viviparity in squamates (Tinkle and Gibbons 1977; Shine and
Bull 1979; Guillette et al. 1980; Pilorge and Barbault 1981;
Guillette 1981; Blackburn 1982; Shine 1985), only one has
discussed the evolution of egg guarding (Shine 1988).

From these studies, two specific hypotheses have been sug-
gested. First, egg guarding can be regarded as an alternative
to viviparity (Fitch 1970; Packard et al. 1977). A relatively
frequent association of viviparous species and oviparous spe-
cies with egg guarding in the same taxon may be due to
similar environmental conditions or species characteristics
leading to two different solutions. Second, egg guarding may
be an intermediate step in the evolution of viviparity (Shine
and Bull 1979). This hypothesis is supported by the high
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frequency of viviparous species in taxa containing egg-guard-
ing species, especially in snakes, and by an apparent tendency
for prolonged uterine retention of eggs in brooding squamates
(Shine 1985). Thus, Fitch (1970) proposed an evolutionary
transition from oviparity without egg guarding to viviparity
(O—V) or from oviparity without egg guarding to oviparity
with egg guarding (O—G), whereas Shine and Bull (1979)
proposed an alternative scenario implying the evolution se-
quence from oviparity without egg guarding to oviparity with
egg guarding and then to viviparity (O—»G—V). If Fitch
(1970) is correct, we expect to see a statistical difference
between OV, O«G transitions and G& 'V transitions taking
into account the number of respective cases of oviparity,
viviparity, and egg guarding, whereas if Shine and Bull’s
(1979) hypothesis is right, we expect a statistical difference
between G—V and V-G transitions. Our goal in this paper
is to study in a phylogenetic context the evolution of vivi-
parity and egg guarding in lizards and snakes to test Fitch’s
and Shine and Bull’s hypotheses. Both hypotheses make the
implicit assumptions that character evolution is irreversible
and that oviparity with egg guarding and viviparity are de-
rived. In our analysis, the irreversibility was tested, and the
three reproductive modes were allowed to reverse freely.

MATERIALS AND METHODS

We followed the majority of workers on reproductive
modes and classified species as either ““oviparous’ (shelled
eggs are laid) or ““viviparous’ (the young are fully formed
at laying; Budker 1958; Hoar 1969; Blackburn 1982, 1985).
As egg-guarding behavior takes diverse forms in Squamata
(lizards and snakes), following Shine (1988), we defined
“egg guarding’ as any form of postovipositional parental
behavior or any action of the parent after oviposition that
increases the chances of survival of the offspring. All species
were therefore classified as (1) oviparous without egg guard-
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TaBLE 1.  A. Number of oviparous, egg-guarding, and viviparous genera known in the literature among lizard and snake families, in
which the three types of reproductive mode are known. In parentheses are the number of genera employed in our analyses. B. Number
of oviparous, viviparous, and egg-guarding species among genera in which the three types of reproductive mode are known in the
literature. In parentheses is the number of species employed in our analyses.

A. 0 \% G o O/G o/NVIG References
Boidae 3(3) 11(15) 9(8) 0(0) 2() 00) 8, 13, 22, 27, 46, 55, 60,
66, 72, 73, 78, 87, 88, 89.
Colubridae 117 (4) 24 (0) 1(0) 3(0) 10 (0) 2() 8, 12, 13, 22, 27, 72, 73,
78, 86, 89.
Elapidae 10 (3) 14 (15) 5(0) 00) 3(2) 0(0) 1, 8, 13, 22, 27, 52, 56, 57,
70, 72, 73, 89, 91.
Typhlopidae 0¢0) 0(0) 1(1) 1D 1(0) 0(0) 1, 8, 27,72, 73.
Viperidae 3(3) 707 1(1) 2(0) 1(0) 2(0) 3, 6, 8, 10, 13, 20, 22, 27,
47, 51, 68, 72, 73, 89.
Anguidae 3(1) 7(3) 0(0) 1(H 3(3) 2(0) 5, 7,17, 19, 27, 31, 33, 34,
45, 49, 53, 62, 67, 69, 72,
73, 75, 80, 82, 84, 90.
Iguanidae 24 (23) 3(1) 4 (4) 5(6) 1(1) 0(0) 2,7, 14, 15, 16, 21, 23, 24,
25, 27, 28, 32, 40, 41, 44,
45, 50, 54, 59, 64, 71, 72,
73, 74, 77, 79, 83, 85, 93.
Scincidae 25 (10) 20 (0) 0 11(7) 2(h) 10 4,6,7,9, 11, 18, 24, 26,
27, 30, 35, 36, 37, 38, 39,
42, 43, 45, 63, 72, 73, 92.
B. (0] \" G References
Colubridae
Elaphe 12 (4) 1(1) 4(2) 8,27,29,58,72,73
Natrix 3D 6 (1) 1(1) 8,27,48,72,73,76
Viperidae
Agkistrodon 2(2) 6 (1) 2(1) 6,8, 10,72,73.
Trimeresurus 4(2) 11 (3) 1(1) 6, 8,20, 27,47,61, 65,72, 73.
Anguidae
Diploglossus 1(2) 9(9) 2() 5,7,27,34,69,72,73, 82.
Elgaria 5(5) 2(1) 1(1) 7,27,33,72,73.
Scincidae
Eumeces 13(13) 7 (7) 20 (20) 7, 18, 26, 27, 35, 36, 37, 38,

42,72,73,81,92.

References: 1. Alvarez del Toro (1960), 2. Amaral (1977), 3. Andren and Nilson (1979), 4. Arnold and Leviton (1977), 5. Barbour and Ramsden (1919),
6. Baverstock and Donnellan (1990), 7. Blackburn (1982), 8. Blackburn (1985), 9. Brain (1959), 10. Brattstrom (1964), 11. Broadley (1968), 12. Cadle
(1987), 13. Cadle (1988), 14. Carey (1975), 15. Carpenter (1966), 16. Cole (1978), 17. Conant and Downs (1940), 18. Cooper et al. (1983), 19. Daniel
(1983), 20. Deoras (1978), 21. Donoso-Barros (1966), 22. Duellman (1978), 23. Duellman (1979), 24. Estes and Pregill (1988), 25. Etheridge and De
Queiroz (1988), 26. Fitch (1954), 27. Fitch (1970), 28. Frost and Etheridge (1989), 29. Fukada (1978), 30. Garland et al. (1991), 31. Gauthier (1982), 32.
Goldberg (1971), 33. Good (1988), 34. Greer (1967), 35. Greer (1970), 36. Greer (1974), 37. Greer (1977), 38. Greer (1979), 39. Greer (1989), 40. Guillette
et al. (1980), 41. Guillette (1981), 42. Hikida (1981), 43. Hutchinson et al. (1990), 44. Iverson (1979), 45. Jansen and Paukstis (1991), 46. Kluge (1991),
47. Koba et al. (1970), 48. Kuntz (1963), 49. Langerwerf (1981), 50. Lowe and Howard (1975), 51. Marx and Rabb (1965), 52. McCarthy (1985), 53.
McConkey (1954), 54. McCoy (1968), 55. McDowell (1979), 56. Mengden (1985a), 57. Mengden (1985b), 58. Mishima et al. (1977), 59. Montanucci
(1979), 60. Murphy et al. (1978), 61. Nickerson (1974), 62. Noble and Masson (1933), 63. Piennar and FitzSimons (1966), 64. Presch (1969), 65. Reitinger
(1978), 66. Rieppel (1979), 67. Rieppe! (1988), 68. Saint Girons and Nauleau (1981), 69. Schmidt and Inger (1957), 70. Schwaner et al. (1985), 71. Shaw
(1954), 72. Shine (1985), 73. Shine (1988), 74. Smith (1939), 75. Smith (1942), 76. Smith (1943), 77. Smith and Hall (1974), 78. Smith et al. (1977), 79.
Stebbins (1954), 80. Stebbins (1958), 81. Taylor (1935), 82. Taylor (1956), 83. Thomas and Dixon (1976), 84. Tihen (1949), 85. Trillmich (1979), 86.
Underwood (1967), 87. Underwood (1976), 88. Underwood and Stimson (1990), 89. Vitt (1987), 90. Waddick and Smith (1974), 91. Wallach (1985), 92.
Wang (1966), 93. Werner (1982). Numbers in bold character are references used for analysis.

ing (O), (2) oviparous with egg guarding (G), or (3) vivip-
arous (V).

Phylogenetic and reproductive data were gathered from the
literature (see references in Table 1). We analyzed only taxa
showing all three reproductive modes. Consequently, the
number of times they appeared in our sample is different than
that recorded in the literature. When estimates of phyloge-
netic relationships were available, all taxonomic levels at
which transitions were detected were employed for the anal-
ysis. For example, in Anguidae, we analyzed transitions oc-
curring (1) among species within two genera (Diploglossus
and Elgaria), (2) among genera or species within two sub-

families (Diploglossinae and Gerrhonotinae; Anguininae was
excluded because all species are viviparous) and, (3) among
all subfamilies, genera, or species within the family. We an-
alyzed phylogenetic relationships (1) of the lizard and snake
families; (2) within eight families (Boidae, Colubridae, Elap-
idae, Typhlopidae, Viperidae, Anguidae, Iguanidae, and Scin-
cidae); (3) within ten subfamilies (Alsophiinae, Colubrinae,
Natricinae, and Psammophiinae for Colubridae; Viperinae
and Crotalinae for Viperidae; Diploglossinae and Gerrhono-
tinae for Anguidae; and Lygosominae and Scincinae for Scin-
cidae); and (4) within seven genera (Elaphe and Natrix for
Colubridae; Agkistrodon and Trimeresurus for Viperidae; Di-



A PHYLOGENETIC ANALYSIS OF SQUAMATA REPRODUCTION

8
£ ¢ 3
3 g 2 @
= Fod S o ] 2 .8
g & £ % R -
g 3 by o 5 g 5
a S S i ] § ﬁ
1 2 3 4 5 6 7
B O & &8 m 0 =

oviparity
viviparity
polymorphic
equivocal

GOOD (1988)

1 2 3 Il 5 6 7

reconstruction 1

reconstruction 2

Fig. 1. Phylogenetic trees among the genera of Gerrhonotine as
suggested by Good (1988) and all possible reconstructions by the
cycling option of McClade’s program (Maddison and Maddison
1990).

ploglossus and Elgeria for Anguidae; and Eumeces for Scin-
cidae). Finally, when several cladograms were available for
a taxon, we used all of them to analyze the sensitivity of our
results with respect to possible misclassifications. As the ir-
reversibility was tested, the character in the transformation
series was considered as unordered (Fitch Parsimony). We
used McClade (Maddison and Maddison 1990) for analyzing
all phylogenies and studying character evolution. We used
the cycling option to look for all possible reconstructions of
the life-history character (Fig. 1). To infer polarity among
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reproductive characters, we used outgroup comparisons (Far-
ris 1982; Maddison et al. 1984; Wiley et al. 1991). To use
this method, it is necessary that the studied group (ingroup)
be monophyletic because members of a monophyletic group
are bound together by common ancestry relationships that
they do not share with any other taxa (Brooks and McLennan
1991). The outgroup (any group used in an analysis not in-
cluded in the taxon under study) is used for comparative
purposes, usually in arguments concerning the relative po-
larity of characters (Wiley et al. 1991). To determine polarity,
simple parsimony arguments are used in conjunction with an
optimization routine developed by Maddison et al. (1984).
These authors showed that hypotheses about the relationship
among ingroup and outgroup(s) can have a profound influ-
ence on measures of character polarity.

RESULTS

Phylogenetic Analyses of the Familial Level

For lizards, we used phylogenetic data from Camp (1923),
Underwood (1957, 1971), Northcutt (1978), Schwenk (1988),
Estes and Pregill (1988), Estes et al. (1988), Presch (1988),
Rieppel (1988), Greene (1988), and Greer (1989). For snakes,
we used data from Rage (1987), McDowell (1987), Rieppel
(1988), Greene (1988), and Cadle (1987, 1988).

Among all phylogenetic trees of lizard relationships at the
family level, a maximum of 21 transitions were identified
depending on the tree and the reconstructions used. Among
phylogenetic trees of snake relationships at the family level,
a maximum of 16 transitions were identified. We found a
maximum of 15 transitions from oviparity without egg guard-
ing (O) to viviparity (V), 10 transitions from oviparity with-
out egg guarding (O) to oviparity with egg guarding (G), 8
transitions from viviparity to oviparity (V—0), and 5 tran-
sitions from viviparity to oviparity with egg guarding (V—G,
Table 2A). Within all cladograms of lizard relationships, ovi-
parity without egg guarding represents the plesiomorphic
condition, and egg guarding and viviparity the apomorphic
conditions. For snakes, depending on the reconstructions,
oviparity or viviparity represent the plesiomorphic conditions
and egg guarding always the apomorphic condition. At this
taxonomic level, no transitions from egg guarding to vivi-
parity were found. Moreover, the results clearly show that
viviparity appears earlier than egg guarding (Table 3).

Phylogenetic Analyses of the Generic Level

The data of lizards and snakes used for generic relation-
ships are shown in Table 1B. Among all phylogenetic trees
of generic relationships at the familial or interfamilial levels,
a maximum of 26 transitions were identified for lizards and
a maximum of 29 transitions were identified for snakes de-
pending on the tree used. We found 15 transitions from O—V,
16 transitions from O—G, 8 transitions from G—-O, 8 tran-
sitions from V—0, 6 transitions from V—G, and 2 transitions
from G—>V.

The two G—V transitions were detected in Cadle’s (1988),
and Rieppel’s (1988; Fig. 2) cladograms. The first case (Cadle
1988) is found in a tree based on albumin immunological
distances, which is under debate (Savitsky 1980; McCarthy
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TABLE 2.  A. Maximum of transitions occurred among lizard and
snake families. B. Maximum of transitions occurred among lizard
and snake genera. C. Maximum of transitions occurred among lizard
and snake species.

A. 0-VO0O-5G V>0 G50 V-GGV
Lizard families 10 6 3 0 2 0
Snake families 5 4 5 0 3 0
Total 15 10 8 0 5 0
Percent ’ 40 26 21 0 13 0
B. 05>V 0-G V50 G50 V-GGV
Boidae 0 2 2 2 1 0
Colubridae 2 0 0 1 0
Elapidae 3 2 0 0 0 0
Typhlopidae 1 2 0 0 0 0
Viperidae 2 2 2 3 1 1
Anguidae 2 2 3 2 2 1
Iguanidae 5 3 1 1 0 0
Scincidae 1 1 0 0 1 0
Total 15 16 8 8 6 2
Percent 27 29 14.5 14.5 11 4
C. 0>V 055G V50 GHo0 Vo5GG-oHYV
Colubridae

Elaphe 1 0 0 0 0 0

Natrix 0 0 0 0 0 0
Viperidae

Agkistrodon 0 0 0 0 0 0

Trimeresurus 0 0 0 0 0 0
Anguidae

Diploglossus 1 1 1 0 1 0

Elgaria 2 3 0 0 2 0
Scincidae

Eumeces 1 2 0 3 0 2
Trees with mixed spe-
cies 11 6 10 0 1 0
Total 16 12 11 3 4 2
Percent 33 25 24 6 8 4
Total 46 38 27 11 15 4
Percent 33 27 19 8 11 2

1985). Indeed, this tree assumes monophyly between 18 gen-
era of colubrids, elapids, and viperids when it turns out to
be not the case (Bogert 1943; Underwood 1967; McDowell
1969; Voris 1977; Cadle and Gorman 1981; Schwaner et al.
1985). In the second case, one G—V transition was found in
one reconstruction of Gerrhonotinae phylogeny constructed
by Rieppel (1988; Fig. 2), but in all other phylogenetic trees
proposed by Smith (1942), Tihen (1949), Stebbins (1958),
Waddick and Smith (1974), Gauthier (1982; Fig. 3), or Good
(1988, Fig. 1) no V-G transition nor vice-versa are found.

To summarize, cases of G-V transitions are rare, and these
transitions occur only in trees that are still under debate. As
at the family level, oviparity and viviparity represent in all
cases except one the plesiomorphic characters and egg guard-
ing the derived character (in 70.5% of all reconstructions,
oviparity is the ancestral character; in 29.49%, it is viviparity;
and in only 0.01%, it is egg guarding).

Phylogenetic Analyses of the Species Level

The data of lizards and snakes used for species relation-
ships are shown in Table 1B. Among all phylogenetic trees
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TaBLE 3. Number of reconstructions and ancestral character states
for each phylogenetic tree of lizard and snake relationships at the
family level.
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A Wagner.S cladogram PHYSYS
B Wagner.S cladogram PHYSYS
C PAUP cladogram
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of species relationships at the generic, familial, or interfamil-
ial levels, a maximum of 19 transitions were identified for
lizards and a maximum of 29 transitions were identified for
snakes, depending on the tree used and the different possible
reconstructions (Table 2C). We found 16 transitions from
O—-YV, 12 transitions from O—G, 11 transitions from V-0,
3 transitions from G—O, and 2 transitions from G-oV.

The two G-V transitions were detected in a long phy-
logenetic tree of 56 species of Eumeces (Scincidae) based on
morphological characteristics constructed by Taylor (1935).
Several authors (Greer 1970; Hikida 1978) questioned Tay-
lor’s (1935) hypothesis and concluded that Eumeces is not
monophyletic. In the phylogenetic tree proposed by Murphy
et al. (1983), the relationships among 11 populations of five
species from the North American fasciatus group of Eumeces
do not show V&G transitions. In this study, the authors chose
as the outgroups two species of Eumeces to determine the
evolutionary polarity of the reproductive modes of the fas-
ciatus group of the Eumeces.

Thus, the results show at all taxonomic levels very few of
G-V transitions (only 2% G—V versus 11% V-G transi-
tions, Table 2). As in the cases of families and genera, ovi-
parity and viviparity represent in all cases the plesiomorphic
character states and egg guarding the derived character state
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Fig. 2. Phylogenetic trees among the genera of Gerrhonotine as suggested by Rieppel (1979) and all possible reconstructions by the
cycling option of MacClade’s program (Maddison and Maddison 1990). In reconstruction 5, a transition G-V is found.

(in 60% of all reconstructions, oviparity is the ancestral char-
acter; and in 40%, it is viviparity).

DiSCUSSION

In total, a maximum of 141 independent transitions (73
0oV, 49 060G, and 19 Vo G) were detected. As we consider
only phylogenetic trees with taxa showing all three repro-
ductive modes, the percentage of oviparous, viviparous, or

egg-guarding families, genera, and species used in our anal-
yses are different than those generally cited in the literature
(for our analyses, the percentage of families, genera, and
species being oviparous: 135 cases or 46%, viviparous: 100
cases or 33%, and egg guarding: 63 cases or 21%). Based
on these numbers, we can calculate the probability of oc-
currence of each type of transitions under the hypothesis of
independence among transition types (x3 = 5495, P <
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different phylogenetic trees, only one shows a G—V transition.

0.001). In particular, there is a strong deficit in the transition
between egg guarding to viviparity compared with viviparity
to oviparity with egg guarding (x3 = 13.01; P < 0.001). The
hypothesis that egg guarding preadapted lizards to viviparity
(Shine and Bull 1979) seems to have little support (only four
“G—-V” transitions).

All reconstructions with MacClade of the life-history char-

TIHEN (1949)
8 reconstructions

Phylogenetic trees among the genera of Gerrhonotine as suggested by several authors. In 38 reconstructions among seven

acter show that oviparity is the ancestral character in 73.6%,
viviparity in 26.397%, and egg guarding in 0.003%. Vivi-
parity and egg guarding arose independently several times in
the evolution of lizards and snakes, and within cladograms
of family relationships, viviparity usually appeared before
egg guarding. Egg guarding is widespread only within a re-
stricted number of phylogenetic lineages of squamates (Fitch
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1970; Shine 1988). By parsimony, this suggests that egg
guarding has evolved only once in each group, early in its
history, and has been retained during subsequent speciations
(Ridley 1983). However, the transition from oviparity 1o vi-
viparity does not seem to be as irreversible as we first thought.
A hybridization experiment between oviparous and vivipa-
rous populations of Lacerta vivipara was conducted by Heu-
lin et al. (1989). Numerous fertile F, hybrids were obtained,
implying that there is no reproductive isolation between the
two forms. Moreover, if egg guarding facilitates the evolution
of viviparity, we might expect that species with mixed re-
productive modes, such as L. vivipara, would have some ovip-
arous populations with egg guarding and some viviparous
ones. Among the 11 species within the families studied here
showing more than one reproductive mode, all are either
oviparous without egg guarding or viviparous.

Without underestimating the fact that viviparity is rela-
tively easier to detect than is egg guarding, which depends
on detailed field studies, all results suggest that egg guarding
probably appeared more recently in the history of each taxon
than did viviparity. Thus, our results are more consistent with
Fitch’s (1970) prediction that egg guarding probably did not
evolve as an evolution history to viviparity than with Shine
and Bull’s hypothesis of guarding as an intermediate con-
dition. That some transitions were observed between egg
guarding and viviparity seems to be open to another inter-
pretation. Although a complete analysis of the factors influ-
encing the evolution of viviparity and egg guarding was not
the goal of our study, we will consider a few hypotheses
particularly relevant to lizards and snakes.

Environmental conditions that favor high maternal in-
vestment (viviparity, egg guarding, and even uterine retention
of eggs) might influence the evolution of any of these strat-
egies. Hence, the cooccurences in eight families (Boidae,
Colubridae, Elapidae, Typhlopidae, Viperidae, Anguidae,
Iguanidae, and Scincidae) of egg guarding and viviparous
species may relate to common causation rather than to one
factor (egg guarding) preadapting a species for another (vi-
viparity).

Cold climates seem to have been the most important single
selective agent favoring viviparity (Shine 1988), but it is
equally obvious that this single force cannot explain all cases.
For example, viviparity in Lygosoma or Sphenomorphus is
not explainable by the cold-climate hypothesis (Shine 1988;
Shine and Guillette 1988). Other hypotheses for the effects
of environmental influences (e.g., hot climates, unpredict-
ability of environment, and soil moisture) or species char-
acteristics (e.g., nest predation and physiological constraints)
either have not been tested (lack of data) or are unlikely to
have general importance (Shine 1988).

In contrast to their effect on the evolution of viviparity,
cold climates are not an important factor favoring egg guard-
ing (Shine 1988). One factor that may promote the evolution
of egg guarding is limited availability of nest sites (Shine
1988). If nest sites are scarce relative to the number of nesting
females, older nests are likely to be excavated and destroyed
by other females. Active defense of nest sites by females
occurs in iguanines and is correlated with nest site availability
(Wiewandt 1982). Although the limited availability of nest
sites is consistent with egg guarding in Iguanidae, it is un-

TABLE 4. Body-size means (snout-vent length) between oviparous
and viviparous species or between oviparous and egg-guarding spe-
cies within a genus. In parentheses is the number of species for
which size and reproductive data are available in the literature. O,
oviparity without egg guarding; G, oviparity with egg guarding;
and V, viviparity.

Egg Ratio
Oviparous Viviparous guarding —————
{cm) {cm) (cm) v/0 G/O

Anguidae

Elgeria 354 (2) 232(1) 369(1) 0.65 1.04

Ophisaurus 505 (1) 930 (4) 1.84
Chamaeleonidae

Chamaeleo 187(7) 85(4) 0.45
Iguanidae

Liolaemus 68 (1) 89(9) 1.32

Phrynosoma 110(8) 106 (2) 0.96

Sceloporus 168 (2) 202 (6) 1.20

Cyclura 225 (1) 471 (2) 2.09
Scincidae

Eumeces : 62(5) 62(6) 75(2) 1.00 1.20

Scelotes 180 (2) 138(1) 0.77

Harrisoniascincus 56(1) 45(1) 0.80

Typhlosaurus 285(2) 153(2) 0.54

Leiolopisma 66(6) 57(1) 0.86

Anamolopus 127 (3) 102 (1) 0.80

Glaphyromorphus 61 (7)) 72(1) 1.17

Lerista 62(2) 593 0.95

Mabuya 132 (1) 135(1) 1.02
Varanidae

Varanus 313(2) . 544 (3) 1.74
Boidae

Python 180 (1) 595 (4) 3.30
Colubridae

Elaphe 158 (3) 220 (3) 1.39

Heterodon 75(2) 116 (1) 1.55

Lampropeltis 133 (5) 199 (1) 1.50
Elapidae

Naja 210 (3) 270 (2) 1.28
Viperidae

Causus 44 (1) 100 (1) 2.27

Vipera 145(2) 73(7) 0.50

likely to be of general importance, because scarcity of suit-
able nesting sites may be a rare phenomenon (Shine 1988).

Although the same ecological factors may explain the ap-
pearance of both egg guarding and viviparity, the evolution
of correlated traits that favor or are linked to their appearance
could be quite different. In particular, a major benefit of egg
guarding is the repulsion of potential egg predators, then egg
guarding should evolve most often in species in which the
parent is capable of deterring predators (Shine 1988). This
is most likely in large species. To test the hypothesis that
large size cooccurs with egg guarding, we have taken the
mean snout-vent length for each mode, and using within-
genera, pairwise comparisons, we can calculate size differ-
ences between O and V, and O and G (Felsenstein 1985; Burt
1989; Harvey and Pagel 1991; Table 2). Our results show
that egg guarding is associated with an increase in size (¢,
= —5.96; P < 0.001, one-tailed test). Although viviparity is
associated with a reduction in size (f;5 = 2.00; P < 0.035,
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one-tailed test). The small size of viviparous species may be
explained by the benefits of viviparity in terms of an increase
in the number of surviving offspring (Neil 1964). In this case,
size might relate to the decrease of a viviparous female’s
fecundity. On the contrary, reduction in fecundity in vivip-
arous species could have been linked in a reduction in size
(Dunham et al. 1988). The increase in size of egg guarding
species is consistent with the prediction that this behavior
should be found most often in groups in which parents are
able to defend their eggs. Although this latter result may
explain why egg guarding and viviparity seem to be inde-
pendent, almost antagonistic, evolutionary events, a similar
analysis on a larger sample size and using more life-history
traits would be necessary to fully support this prediction.
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