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Abstract

Metalloproteinases and disintegrins are important components of
most viperid and crotalid venoms. Large metalloproteinases referred
to as MDC enzymes are composed of an N-terminal Metalloproteinase
domain, a Disintegrin-like domain and a Cys-rich C-terminus. In
contrast, disintegrins are small non-enzymatic RGD-containing cys-
teine-rich polypeptides. However, the disintegrin region of MDC
enzymes bears a high degree of structural homology to that of the
disintegrins, although it lacks the RGD motif. Despite these differ-
ences, both components share the property of being able to recognize
integrin cell surface receptors and thereby to inhibit integrin-depend-
ent cell reactions. Recently, several membrane-bound MDC enzymes,
closely related to soluble venom MDC enzymes, have been described
in mammalian cells. This group of membrane-anchored mammalian
enzymes is also called the ADAM family of proteins due to the
structure revealing A Disintegrin And Metalloproteinase domains.
ADAMs are involved in the shedding of molecules from the cell
surface, a property which is also shared by some venom MDC en-
zymes.
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Introduction

Venoms of viperid and crotalid snakes
are rich sources of components that can af-
fect hemostasis by causing changes in blood
coagulation and platelet function. Venom
components affecting the clotting system in-
clude thrombin-like enzymes (TLE) which
convert fibrinogen to fibrin, and activators of
prothrombin, factor V and factor X. Platelet
function can be affected by venom compo-
nents such as hemorrhagic metalloprotein-
ases, phospholipases and RGD-containing
disintegrins. As a result, it is common to find

consumption of clotting factors and blood
incoagulability accompanied by hemorrhage
in victims of snakebite. Various reviews on
this subject have been published (1-4).

Several venom enzymes lacking coagu-
lant activity but possessing the ability to
cause local hemorrhage have been character-
ized, as recently reviewed by Bjarnason and
Fox (5). They are zinc-containing metallo-
proteinases varying in size from 20 to 100
kDa, capable of inducing rapid local bleed-
ing. Metalloproteinases of different sizes are
often present in the same venom. The high
molecular weight enzymes are classified as
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metalloproteinase/disintegrin-like/cysteine-
rich (MDC) proteins, according to a struc-
ture containing an N-terminal catalytic site,
a disintegrin-like domain followed by a cys-
teine-rich C-terminus. These enzymes have
a potent proteolytic effect on the extracellu-
lar matrix proteins. Their effects on the blood
vessel wall components have been exten-
sively studied (5,6). The arrest of bleeding
from the damaged blood vessels, however,
depends on normal function of blood plate-
lets and clotting factors, which are the prin-
cipal blood components involved in hemo-
stasis. The extent to which these latter com-
ponents are directly affected by venom hem-
orrhagic metalloproteinases has not been
explored in detail.

Another group of snake venom compo-
nents that affect platelet function is com-
prised of small non-enzyme polypeptides (5-
10 kDa) called disintegrins. Disintegrins have
also been recently investigated in many other
cells besides platelets. Since disintegrin do-
mains of venom MDC enzymes and disinte-
grins show pronounced structural homol-
ogy, they will be reviewed together here,
referring particularly to their effects on cell-
cell interactions using platelets as a model.

Mechanism of hemostasis

Blood fluidity in the circulation is main-
tained by the non-thrombogenic properties
of the intact blood vessel walls. Damage to
blood vessels triggers a prompt response of
hemostatic reactions to prevent hemorrhage
(7). Very briefly, these reactions include
contraction of the vessel wall itself due to the
action of released vasoactive agents, adhe-
sion and aggregation of circulating platelets
to form a hemostatic plug and activation of
clotting factors leading to the formation of
fibrin clots. In order to allow full tissue
healing, the clots are subsequently removed
by the fibrinolytic enzyme, plasmin. In situ-
ations where any component of these mecha-
nisms is altered, hemostasis is compromised

and the result could be either thrombosis or
hemorrhage (bleeding due to platelet and/or
clotting factor deficiencies).

In small blood vessels, platelets alone
can arrest bleeding. In their inactive form,
platelets are discoid but once activated they
become round, extend numerous pseudo-
pods and then aggregate. This occurs when
platelets are exposed to ADP, thrombin, a-
drenaline, collagen, and other agonists. Each
agonist stimulates platelets via a specific
receptor, whereby the receptor for collagen
belongs to the superfamily of αß dimeric
proteins or integrins (8). Indeed, the first
reaction of platelets to vessel damage is their
adhesion to the adhesive proteins, von
Willebrand factor (vWF) and collagen on the
exposed subendothelium. The respective
platelet receptors for these proteins are the
glycoprotein (gp) Ib/IX complex (9,10) and
α2ß1 integrin also known as the gpIa/IIa com-
plex (11). Engagement of these receptors
stimulates platelets to secrete their granular
contents and in particular ADP, which pro-
motes activation of platelet αIIbß3 integrin or
gpIIb/IIIa. This receptor then binds the RGD-
containing ligands (fibrinogen and von
Willebrand factor) and thereby promotes
platelet aggregation, resulting in the forma-
tion of a platelet plug which stops bleeding.
Thus, the mechanism by which platelets act
clearly depends on their surface receptors
for vessel wall and plasma proteins and on
normal content and release of their granular
ADP stores.

Venom metalloproteinase/disintegrin-
like/cysteine-rich enzymes

Mechanism of hemorrhage by
venom MDC enzymes

As mentioned above, the presence of
clotting factor activators in many venoms
frequently causes consumption coagulopa-
thy in envenomed victims and this is often
associated with systemic bleeding. In some
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envenomed patients, systemic bleeding can
be fatal (12,13) and, interestingly in one
case, fatal intracranial hemorrhage has been
described apparently in the absence of co-
agulopathy (14). Moreover, there have been
other reports describing spontaneous sys-
temic bleeding following snake bite in which
no coagulation defects have been recorded
(12,15,16). Systemic bleeding without co-
agulopathy has also been reported in a case
of envenoming by the snake Philodryas
olfersii (17), which led to the discovery of
one hemorrhagic metalloproteinase in the
venom of this species (18). Experimental
studies have shown that venoms of various
snakes can cause pronounced local hemor-
rhage in the absence of coagulant activity
(15,19). In one such study using a purified
non-coagulant hemorrhagic toxin, systemic
bleeding was observed (20), whereas in an-
other, using a different hemorrhagic toxin,
this effect could not be demonstrated (21).
Therefore, different metalloproteinases ap-
pear to differ in their ability to cause sys-
temic effects; this clearly requires further in-
depth studies of the effects of these enzymes
on the hemostatic mechanism.

Various studies have demonstrated that
purified venom metalloproteinases alone
cause local hemorrhage. Hemorrhagic me-
talloproteinases from crotalid and viperid
venoms produce local bleeding by causing
lesions in the walls of small blood vessels
(22,23). It is believed that this is caused by
proteolysis of components of the basal lamina
of the microvasculature (24-26). In animal
experiments, such disruption of microvessels
becomes evident within minutes of an intra-
dermal injection of venom metalloprotein-
ases. These enzymes degrade all major pro-
teins of the extracellular matrix (ECM)
(6,27,28) and in this respect they resemble
the cell-secreted soluble matrix metallopro-
teinases (MMP). A positive correlation ex-
ists between the proteolytic activity of ven-
om metalloproteinases and their hemorrhagic
potencies. Larger enzymes are more potent

than the smaller ones in degrading the extra-
cellular matrix (6,26). However, the pro-
teolytic attack of these enzymes on ECM
proteins is slow, while the in vivo hemor-
rhagic effect of the venom occurs within
minutes of the bite or experimental injec-
tion. This indicates that the mechanism of
action of these enzymes may be consider-
ably more complex (23,29). It has been well
documented that the venom hemorrhagic
metalloproteinases, because of their broad
substrate specificity, cause digestion of the
extracellular matrix proteins and damage the
integrity of blood vessels. Although this can
explain the phenomenon of local bleeding,
past studies have shed little light on the
possibility that metalloproteinases can have
effects on other components of the hemo-
static mechanism and thereby also contri-
bute to systemic bleeding.

We have investigated the effects of
envenoming by Bothrops jararaca, because
this species constitutes the major problem in
southeastern Brazil, and because local and
systemic hemorrhage is one of the most
prominent results of envenoming by this
species (30-32). The main venom compo-
nent responsible for this effect is thought to
be jararhagin (33), an MDC enzyme which
causes intense local hemorrhage, inhibits
platelet aggregation in vitro and, as shown in
animal experiments, also contributes to sys-
temic bleeding (34). The reason why
jararhagin contributes significantly to the
systemic bleeding is because this enzyme is
not effectively inhibited by plasma protein-
ase inhibitors (34). When radiolabelled
jararhagin was incubated with whole plasma
and its binding to plasma proteins examined
by immunoelectrophoresis, only α2-macro-
globulin (α2-M) was capable of binding
jararhagin. However, jararhagin retained
considerable proteolytic activity towards high
molecular weight substrates such as fibrino-
gen and hide powder azure in the presence of
a large molar excess of α2-M (34). Others
have also shown that some venom metallo-
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proteinases are not completely inhibited by
equimolar amounts of α2-M (28,35), but the
precise reason why the inhibitor-enzyme re-
action failed to proceed to completion was
not clarified.

Of all venom components known to in-
terfere with hemostasis, the hemorrhagic
metalloproteinases have been the least in-
vestigated. Little attention has been paid to
the effects of these enzymes on platelets
which, as mentioned before, play a central
role in the hemostatic mechanism.

Venom MDC enzymes and platelet function

Earlier studies of venom metalloprotein-
ases showed that they can inhibit platelet
aggregation in vitro (36). As the majority of
these enzymes are also known to hydrolyze
theα-chain of fibrinogen (α-fibrinogenases;
37), and since fibrinogen is an important
cofactor in platelet aggregation (38,39), it
has been proposed that the inhibition of plate-
let aggregation caused by these enzymes is
due to degradation of fibrinogen (2,40). How-
ever, we have shown that the proteolysis by
jararhagin of the C-terminal fibrinogen α-
chain, which contains an RGD sequence,
does not affect fibrinogen-dependent plate-
let aggregation (41). This is mainly because
jararhagin and other venom α-fibrinogenases
do not attack the fibrinogen γ-chain, which
contains the more important platelet binding
site.

The venom MDC enzymes, such as
jararhagin, have a disintegrin-like domain
whose function is not precisely known. How-
ever, we have reported that this domain may
play an important role in the substrate speci-
ficity of the enzyme (42,43). Jararhagin has a
very selective effect on platelets in platelet-
rich plasma in vitro with inhibition of both
collagen- and ristocetin-induced cell aggre-
gation only. This suggested either the pro-
teolysis by jararhagin of collagen and vWF,
or an interference with their respective plate-
let receptors, α2ß1 integrin and gpIb. The

fibrillar type I collagen currently used in
platelet aggregation studies is not degraded
by venom MDC enzymes, the preferential
substrate structure being type IV collagen (5).

In jararhagin-treated platelets, no alter-
ations of gpIb could be detected either by
flow cytometry or by immunoprecipitation
(44). This indicated that jararhagin inhibi-
tion of platelet responses to the ristocetin/
vWF complex may have been due to some
effect on the multimeric plasma protein, vWF.
The 225-kDa vWF subunit contains the
Val449-Lys728 N-terminal domain responsible
for ristocetin-induced binding to platelet gpIb,
and one binding site for platelet αIIbß3 integrin
containing the C-terminal RGDS1744-1747 se-
quence (45). We have shown that the treat-
ment of vWF with jararhagin resulted in the
proteolysis of vWF subunits in the N-termi-
nal half of the molecule which contains the
platelet gpIb binding site (44). Thus,
jararhagin inhibited platelet responses to ris-
tocetin by cleaving the ligand vWF, with loss
of the gpIb binding site.

There are several proposed platelet col-
lagen receptors including α2ß1 and αIIbß3

integrins, gpIV and gpVI. It is proposed that
collagen first binds to the I domain of the
α2ß1 integrin; this binding generates signals
for the activation and expression of a bind-
ing site on αIIbß3 integrin (46) resulting in
collagen binding, presumably by the col-
lagen RGD sequence. These reactions result
in a full platelet aggregation response. The
αIIbß3 integrin has also been found to be both
structurally and functionally unaltered in
jararhagin-treated platelets (41). This was
expected from the preserved fibrinogen-de-
pendent platelet aggregation which is medi-
ated by the αIIbß3 integrin. GpIV is also
functional in jararhagin-treated platelets
(Kamiguti AS and Zuzel M, unpublished
data). In contrast, the expression of the α2ß1

integrin following platelet treatment by
jararhagin is markedly reduced and we found
that this was due to the proteolysis of the ß1

subunit of this integrin (42). There is evi-
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dence that the proteolysis of the platelet α2ß1

integrin by jararhagin is a two-step process
in which jararhagin first recognizes the α2 I
domain (47) and subsequently cleaves the ß1

subunit (42). Jararhagin, as an intact en-
zyme, does not remain bound to platelets.
This can be explained by the alteration of the
integrin structure following proteolysis which
results in the loss of both collagen and
jararhagin binding (42). An equilibrium bind-
ing could be demonstrated when the enzyme
was inactivated by treatment with 1,10-phen-
anthroline (42). Therefore, it is most likely
that the recognition of the platelet α2ß1 inte-
grin by jararhagin occurs via the disintegrin-
like domain including the Cys-rich region.
Furthermore, by using synthetic ECD-con-
taining peptides based on the disintegrin-
like domain of jararhagin, we showed that
these peptides effectively inhibited platelet
responses to collagen, thus confirming the
importance of this domain in cell recogni-
tion (43).

Platelet interaction with collagen results
in increased protein tyrosine phosphoryla-
tion, one of the earliest signals being the
phosphorylation of the non-receptor 72-kDa
tyrosine kinase Syk or pp72syk (48,49). The
activation of pp72syk depends on both α2ß1

integrin and gpVI because the absence of
either one of these receptors results in de-
creased Syk phosphorylation and a poor plate-
let response to fibrillar collagen (50-53). We
found that the proteolysis of the α2ß1 integrin
by jararhagin inhibited protein tyrosine phos-
phorylation in collagen-stimulated platelets,
with greatly reduced tyrosine phosphoryla-
tion of pp72syk (54). These findings not only
explain the altered responses of jararhagin-
treated platelets to collagen, but also support
the hypothesis that α2ß1 integrin plays a vital
role in the platelet/collagen interaction (55,
56). Moreover, since congenital deficiency
of this receptor leads to bleeding manifesta-
tions (52), it is reasonable to expect that
jararhagin-treated platelets would not be
hemostatically fully competent.

Venom disintegrins

Disintegrins are cysteine-rich low mo-
lecular weight polypeptides, which contain
an RGD sequence recognized by integrins.
Trigramin, from the venom of Trimeresurus
gramineus, was the first venom disintegrin
characterized as a competitive inhibitor of
fibrinogen binding to the αIIbß3 integrin of
platelets activated by ADP (57). Following
this, a number of other disintegrins isolated
from different snake venoms have been re-
ported and reviewed (58). It is interesting
that, unlike other RGD-containing ligands
(i.e. fibrinogen), venom disintegrins bind to
αIIbß3 integrin without requiring prior acti-
vation of this integrin. This is because
disintegrins have a unique RGD-containing
loop which can express the ligand-induced
binding site (LIBS) on the ß3 subunit (59).

Recently, a relatively large disintegrin
(28 kDa) containing an ECD sequence in-
stead of RGD, isolated from the venom of B.
jararaca has been reported. This disintegrin
has exactly the same primary structure as the
disintegrin-like domain of jararhagin and was
therefore named jararhagin C (60). Unlike
jararhagin, which in our studies showed no
interference with platelet response to ADP,
jararhagin C inhibited both the ADP- and
collagen-induced responses of platelets. Nev-
ertheless, the finding that jararhagin C inhib-
its collagen-induced platelet aggregation con-
firms our conclusion that the disintegrin-like
domain of the enzyme jararhagin recognizes
the platelet collagen receptor, α2ß1 integrin.

Effects of venom disintegrin on cell function

As mentioned above, disintegrins have
the ability to inhibit the binding of RGD-
containing ligands to platelet αIIbß3 integrin
and, because of this, they impair platelet
aggregation responses dependent on this re-
ceptor. Thus, platelets treated with disinte-
grins do not aggregate in response to col-
lagen stimulation. However, these platelets
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show normal phosphorylation of the tyrosine
kinase pp72syk (54,61). As mentioned above,
collagen first binds to the α2ß1 integrin, sig-
naling for pp72syk phosphorylation and an
inside-out activation of αIIbß3 integrin. In the
disintegrin-treated platelets, the αIIbß3 inte-
grin is already occupied by the venom ligand
so that the aggregation response is lost. How-
ever, pp72syk phosphorylation is preserved,
confirming that free α2ß1 can bind collagen
and signals in these platelets. In this respect,
we found results using both jararhagin and
contortrostatin particularly revealing. Con-
tortrostatin (62) is a dimeric RGD-contain-
ing disintegrin from Agkistrodon contortrix
contortrix venom. Suboptimal ADP stimula-
tion of jararhagin-treated platelets resulted
in a full aggregation response to collagen
and this could be inhibited by either RGDS
peptide or contortrostatin (54). Our explana-
tion for this is that ADP caused activation of
the αIIbß3 integrin in these platelets, which
then bound collagen. Inhibition of this bind-
ing by contortrostatin emphasizes the impor-
tance of αIIbß3 in addition to α2ß1 integrin in
the platelet/collagen interaction.

Recently, disintegrins have been also
shown to interfere with other integrin-medi-
ated cell functions; for example, inhibition
of tumor cell-extracellular matrix adhesion
(63-65) and metastasis (62,66), of adhesion
of human umbilical vein endothelial cells to
matrix proteins (59), and also of egg fertili-
zation through inhibition of sperm-oolemmal
adhesion (67).

Venom MDC enzymes and
disintegrins: structure/function
relationships

The elucidation of the primary structure
of different members of the venom hemor-
rhagic metalloproteinase-disintegrin family
(33,68-70) has generated new interest in the
function of these enzymes. Comparison of
amino acid sequences have indicated that,
despite differences in their molecular sizes,

all these enzymes may be related through a
common ancestral gene encoding a prodo-
main, metalloproteinase, disintegrin and cys-
teine-rich domains (33,69,71). The prodo-
main contains a conserved sequence
PRCGVPD, called a cysteine-switch, which
is responsible for the enzyme activation and
is lacking in the mature protein. A multi-
domain structure characterizes the large hem-
orrhagic metalloproteinases; the N-terminal
region possessing a zinc-containing metallo-
proteinase domain is followed by a disin-
tegrin-like and a C-terminal cysteine-rich
domain. Moreover, disintegrin-like regions
of MDC enzymes possess a high sequence
homology to the venom disintegrins. Disin-
tegrins contain an RGD sequence, but a KGD
sequence has also been reported (72). In
contrast, the disintegrin-like regions of most
venom MDC enzymes have a conserved ECD
sequence overlapping the region where an
RGD sequence occurs in the homologous
disintegrins. However, this is not a constant
motif found in all disintegrin-like domains
because some venom MDC enzymes have a
DCD sequence instead of ECD (73,74).

Since the large hemorrhagic metallopro-
teinases possess a disintegrin-like domain
(MDC enzymes) it is thought that some
disintegrins may originate from autoprote-
olysis of these enzymes (75). The discovery
that jararhagin C is identical to the disintegrin-
like plus Cys-rich regions of jararhagin in B.
jararaca venom (60) supports this proposal.

Membrane-anchored cell MDC
enzymes (ADAM family proteins)

A number of membrane-anchored MDC
enzymes have been reported. They belong to
the ADAM family proteins, with A
Disintegrin And Metalloproteinase domain
(76). They are unique cell surface proteins
possessing both a potential adhesion domain
as well as a potential protease domain, not
related to other surface adhesion molecules
and proteases, but rather to domains found in
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the snake venom MDC enzymes. Sequence
homology to the disintegrin-like domain of
venom hemorrhagic metalloproteinases has
also been found in a sperm protein, fertilin ß,
which mediates egg binding in sperm-egg
fusion (77). Recently, it has been shown that
the disintegrin-like region of this sperm pro-
tein recognizes the α6ß1 integrin on the egg
membrane (78). In addition, six other dis-
tinct ADAMs have been identified in sper-
matogenic cells; all are considered to be
potential ligands for integrins on the cell
surface or receptors for extracellular matrix
and are, therefore, expected to play impor-
tant roles in cell-cell and cell-matrix interac-
tions (79).

The presence of ADAM proteins is not
confined to reproductive tissue only. In 1989,
a metalloproteinase isolated from bovine
brain myelin membrane preparations ap-
peared to be distinct from the other MMP
described at that time (80). The determina-
tion of the primary structure of this metallo-
proteinase by cDNA cloning revealed that
significant similarity exists between the de-
duced sequence of the bovine protein and
jararhagin, the greatest homology being found
in the disintegrin domain (81). Similar find-
ings involve another ADAM protein, meltrin-
α, which participates in myoblast fusion (82).
More recently, a widely expressed cellular
ADAM or MDC enzyme, designated as
MDC9, has been described to have a cyto-
plasmic tail that can bind the SH3 domain of
signal molecules of the Src family proteins,
thus implicating MDC9 in interactions with
the cytoskeleton or with intracellular signal-
ing molecules (83).

The cytokine tumor-necrosis factor-α
(TNF-α) has physiological importance in
inflammation. The release of soluble TNF-α

from its membrane-bound precursor involves
an ADAM enzyme called TNF-α-convert-
ing enzyme (TACE), recently purified and
cloned from monocytes (84). TACE has been
shown to be present in monocytes, peripher-
al blood T cells, neutrophils, endothelial and
smooth muscle cells. TACE has also been
purified and cloned from porcine spleen and
the recombinant protein shown to correctly
process precursor TNF-α to the mature form
(85). Thus, it appears that the membrane-
anchored ADAM proteins play an important
function in shedding cell surface proteins
(84). It is interesting that our investigations
demonstrated that also the soluble venom
MDC enzyme jararhagin can release TNF-α
in a similar fashion to TACE (86). Thus,
there is an indication that jararhagin may
play a role in the inflammatory response
evoked by B. jararaca venom, although this
has not yet been fully investigated.

Conclusions

Venom disintegrins and MDC enzymes
are excellent tools for investigating integrin
cell receptor function. Interference with
integrins and their ligands is the major mech-
anism by which these proteins contribute to
the toxicity of snake venoms. Moreover, the
understanding of the precise mechanism of
action of these venom components and the
finding of the minimum structure required
for their action will certainly extend their
application in studies of cell physiology.
Thus, the studies of venom disintegrins and
MDC enzymes have already greatly aided
the advance which has been recently achieved
in understanding the function of similar mam-
malian proteins.
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